Mapping of low flip angles in magnetic resonance.
نویسندگان
چکیده
Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90° as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90° enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1° to 60° with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.
منابع مشابه
An analysis of the accuracy of magnetic resonance flip angle measurement methods.
Several methods of flip angle mapping for magnetic resonance imaging have been proposed. We evaluated the accuracy of five methods of flip angle measurement in the presence of measurement noise. Our analysis was performed in a closed form by propagation of probability density functions (PDFs). The flip angle mapping methods compared were (1) the phase-sensitive method, (2) the dual-angle method...
متن کاملFactors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities.
To understand the various effects that influence actual flip angles, and correct for these effects, it is important to precisely quantify the MRI parameters (such as T1, T2, and perfusion). In this paper actual flip angle maps are calculated using a conventional gradient-echo (GRE) sequence with different radiofrequency (RF) pulse shapes (Gaussian, sinc, and truncated-sinc), slice-selection gra...
متن کاملThe sensitivity of low flip angle RARE imaging.
It is demonstrated that the stability of the Carr-Purcell-Meiboom-Gill (CPMG) sequence reflects the existence of a steady state solution to the Bloch equations in the absence of T2 and T1 decay. The steady state theory is then used to evaluate the performance of low flip angle RARE imaging sequences with both constant and optimally varied refocusing flip angles. The theory is experimentally ver...
متن کاملMultiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS).
A variation of the rapid acquisition with relaxation enhancement (RARE) sequence (also called turbo spin-echo (TSE) or fast spin-echo (FSE)) is presented. This technique uses variable flip angles along the echo train such that magnetization is initially prepared into the static pseudo steady state (PSS) for a low refocusing flip angle (alpha < 180 degrees ). It is shown that after such a prepar...
متن کاملEffect of Flip Angle on the Correlation Between Signal Intensity and Different Concentrations of Iron Oxide Nanoparticles Using T1-Weighted Turbo-FLASH Inversion Recovery Sequence
BACKGROUND Ultrasmall superparamagnetic iron oxide nanoparticles have been used as a blood pool contrast agent for magnetic resonance angiography and perfusion studies. Linear relationship between signal intensity (SI) and nanoparticle concentration is essential for perfusion measurement. OBJECTIVES The aim of this study was to investigate the effect of different flip angles on maximum SI and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 56 20 شماره
صفحات -
تاریخ انتشار 2011